

Pre-breeding strategies for obtaining new resilient and added value berries

Workshop

Advancing Berry Breeding: From Phenotyping to Genomic Innovation

RESULTS FROM THE OPEN CALL #1 Marker-Assisted Selection (MAS) in strawberry

Béatrice Denoyes Juliette Bénéjam

Open Call #1: Marker-Assisted Selection (MAS) in strawberry

Objective Open Call #1

- Delivering the MAS method to breeders from private companies that are not familiar with this method
- 3 companies were selected :

- Taking advantage of Fluidigm® low-density array for genotyping
- Validation of markers in a broad genetic background

Open Call #1: Marker-Assisted Selection (MAS) in strawberry

What were companies asked to do?

1- Traceability

2- DNA extraction for genotyping

3- Phenotypes (ex. Fruit weight, Brix, Resistances, ...)

The Strawberry Fluidigm® array

RESISTANCES TO PESTS	SNPs in BV v3 array
Rce to Pyhtophthora cactorum	5
Rce to Colletotrichum acutatum	1
Rce to Fusarium oxysporum f. sp.	4
Rce to Colletotrichum gloesporioides	3
Resistance to Verticillium dahliae	2
Resistance to Xanthomonas fragariae	2
Resistance to <i>Podosphaera aphanis</i> (powdery mildew)	5
Resistance to Macrophomina phaseolina	3
Resistance to Tetranychus urticae	2
VEGETATIVE TRAITS	
Day neutrality, Everbearing	3
Flowering time	3
PRODUCTION TRAITS	
Fruit weight (FW)	3
Yield	4
Fruit number	8
FRUIT QUALITY	
Texture (Firmness, bostwick)	6
Fruit color (int, ext, anthocyanins)	11
Flavor	
Sugars (Brix)	7
Acids (pH, malic acid)	3
Nutritional quality	
Vitamin C	4
Polyphenols	3
Aromas	
VOC derived from fatty acids (γ -decalactone)	1
VOC derived from amino acids (phenylpropanoids)	1
Esters	7
Terpene	2
Furanone	3

General description:

96 genetic markers associated to resistance, flowering, yield and quality

Problematic:

Can the markers identified in study populations predict the phenotypic value of hybrids in selection?

Analysis process

SNPs poylmorphism

Additive/non-additive control?

Validation of markers

SNP as trait predictor?

Correlation genetic/phenotypic data

Optimisation of array?

Combination of markers

SNPs polymorphism

Material: 1176 DNA samples analysed, shared from 3 companies

Groups	No. SNPs per group
No polymorphism (only 1 class of allele)	8
Partial polymorphism (2 classes of alleles)	26
Complete polymorphism but 1 class poorly represented (1 class < 10 samples)	16
Complete polymorphism and classes well represented	56

More than 92% of SNPs are polymorphic

SNPs as trait predictor

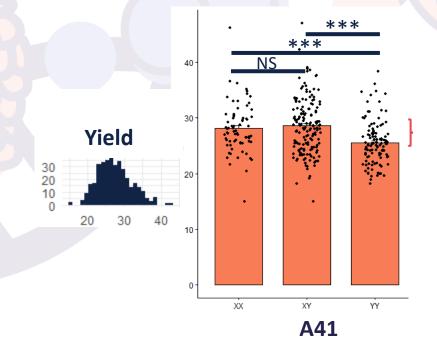
Method:

Variance analysis on R software

Trait A ~ SNP(A02) + residuals
Using Im function (same results as aov function)

A list of SNPs was validated = significant link between SNP allelic class and phenotypic mean

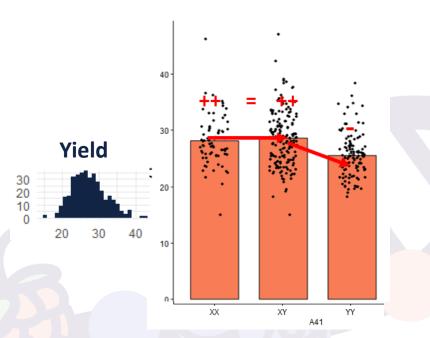
SNPs as trait predictor


Method:

Variance analysis on R software

Trait A ~ SNP(A02) + residuals
Using Im function (same results as aov function)

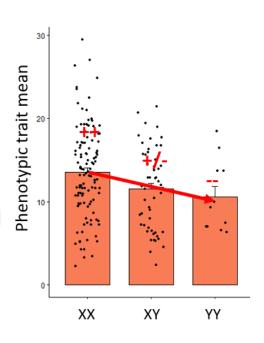
A list of SNPs was validated = significant link between SNP allelic class and phenotypic mean



Mean difference: ~2.5 units between XY and YY

→ Selection of XX or XY genotypes for marker A41 to improve yield

Additive/non-additive



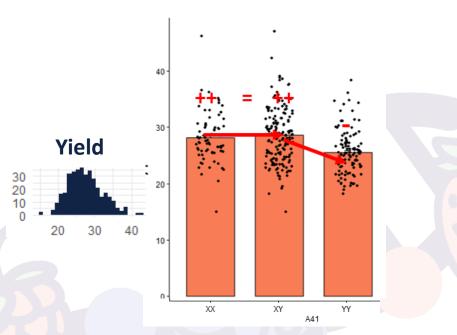
Example 1: dominant effect

Mean_{XX} = Mean_{XY}

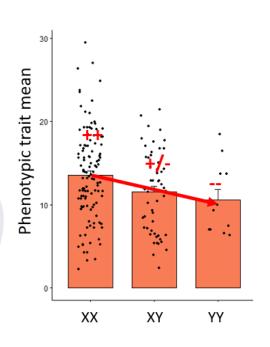
AND Mean_{XX} Mean_{YY}

Example 2: additive effect

Mean_{XX} Mean_{XY} Mean_{YY}


Or

Mean_{XX} Mean_{XY} Mean_{YY}


Additive/non-additive

Example 1: dominant effect

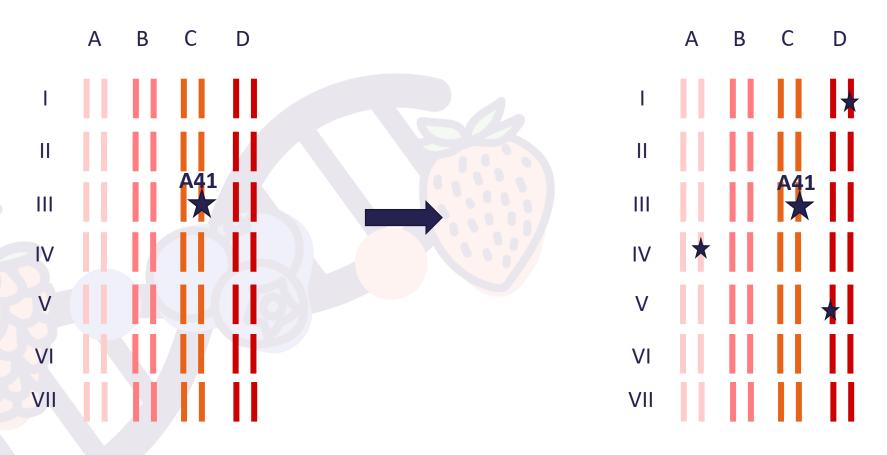
 $Mean_{XX} = Mean_{XY}$ AND $Mean_{XX} > Mean_{YY}$


Example 2: additive effect

→ Ability to predict trait with additive or dominant allelic effect

Optimisation of array: SNP combination

Considering one significant marker


Limits:

- 1- Small difference between means
- 2- Large variability around the means

Optimisation of array: SNP combination

Considering one significant marker

Considering several markers together

Optimisation of array: SNP combination

The combination of 2 SNPs is better than if the SNPs had been considered independently

Conclusions

Companies

- New knowledge about their plant material
- Markers analysis protocol

Public community

- 92% markers informative for genetic analysis
- List of markers validated as trait predictor (validation in a large background)
- Additive/dominant information to refine selection strategy
- Combination of markers for improving MAS

Conclusions

Companies

- New knowledge about their plant material
- Markers analysis protocol

Public community

- 92% markers informative for genetic analysis
- List of markers validated as trait predictor (validation in a large background)
- Additive/dominant information to refine selection strategy
- Combination of markers for improving MAS

INRAO

Béatrice Denoyes
Juliette Bénéjam
Amèlia Gaston
Johan Petit
Aline Potier
Pierre Prevost

THANK YOU

